Forty Hill CE School
 Mathematics Calculation Policy

Based on the White Rose Maths Scheme used throughout the school
Accepted by the Governing Body: Dec 2022
Review Date: Dec 2025

Rationale

The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions
(National Curriculum - Mathematics Programmes of Study, DFE 2013)
Written methods of calculations are based on mental strategies. Each of the four operations (addition, subtraction, multiplication and division) builds on mental skills which provide the foundation for jottings and informal written methods of recording. Skills need to be taught, practised and reviewed constantly. These skills lead on to more formal written methods of calculation.

Strategies for calculation need to be supported by familiar models and images to reinforce understanding. When teaching a new strategy, it is important to start with numbers that the child can easily manipulate so that they can understand the concept.

The aim is for all children to be confident in at least one written method for each of the four operations which is reliable and efficient. Each of the stages of calculation identified in this booklet is explained through pictures, symbols and diagram

This policy has been designed to teach children using concrete, pictorial and abstract representations. This approach will vary between year groups and the individual abilities of children within each class.

- Concrete representation - a pupil is first introduced to an idea or skill by acting it out with real objects. This is a 'hands on' component using real objects and is a foundation for conceptual understanding.
- Pictorial representation - a pupil has sufficiently understood the 'hands on' experiences performed and can now relate them to representations, such as a diagram or picture of the problem.
- Abstract representation-a pupil is now capable of representing problems by using mathematical notation, for example $12 \times 2=24$.

Key skills taken from the White Rose Calculation Policy - KS1			
	EYFS	Year 1	Year 2
Addition	-One more or less -Combining two amounts -Making pairs -Bonds to 10 -Build numbers to 10 -Adding more	- Add two 1-digit numbers to 10 - Add 1 and 2-digit numbers to 20	- Add three 1-digit numbers - Add 1 and 2-digit numbers to 100 - Add two 2-digit numbers
Subtraction	-One more or less -Taking away	-Subtract two 1-digit numbers to 10 -Subtract 1 and 2-digit numbers to 20	-Subtract 1 and 2-digit numbers to 100 -Subtract two 2-digit numbers
Multiplication	-Making pairs -Doubling	-Solve one-step problems with multiplication	-Solve one-step problems with multiplication
Division	-Sharing and Grouping -Even and odd	-Solve one-step problems with division (sharing) -Solve one-step problems with division (grouping)	-Solve one-step problems with division (sharing) -Solve one-step problems with division (grouping)

Key skills taken from the White Rose Calculation Policy - KS2				
	Year 3	Year 4	Year 5	Year 6
Addition	- Add with up to 3-digits	- Add with up to 4-digits	- Add with more than 4 digits - Add with up to 3 decimal places	- Add with more than 4 digits - Add with up to 3 decimal places
Subtraction	-Subtract with up to 3- digits	-Subtract with up to 4- digits	-Subtract with more than 4 digits -Subtract with up to 3 decimal places	-Subtract with more than 4 digits -Subtract with up to 3 decimal places
Multiplication	-Multiply 2-digit by 1- digit numbers	-Multiply 2-digit by 1- digit numbers -Multiply 3-digit by 1 - digit numbers	-Multiply numbers 4 -digit by 1 - digit -Multiply numbers 2 -digit by $2-$ digit -Multiply numbers 2 -digit by $3-$ digit -Multiply numbers 2 -digit by $4-$ digit	-Multiply 2-digit by 4- digit numbers
Division	-Divide 2-digits by 1- digit (no exchange sharing) -Divide 2-digits by 1- digit (sharing with exchange) -Divide 2-digits by 1- digit (sharing with remainders)	-Divide 2-digits by 1- digit (grouping) -Divide 3-digits by 1- digit (sharing with exchange) -Divide 3 -digits by 1 - digit (grouping)	-Divide 3-digits by 1- digit (grouping) -Divide 4-digits by 1- digit (grouping)	-Divide multi-digits by 2-digits (short division) -Divide multi-digits by 2-digits (long division)

EYFS - Nursery and Reception - Addition		
Concrete	Pictorial	Abstract
Use toys and general classroom resources for children to physically manipulate, group/regroup. Use specific maths resources such as counters, snap cubes, Numicon etc. They understand addition as counting on and will count on in ones and twos using object s, cubes, bead string and number line. $00000000-00000-$	Two groups of pictures so children are able to count the total. Bar model using visuals, pictures/icons or colours. Use visual supports such as ten frames, part-part whole and addition mats with pictures/icons.	A focus on symbols and numbers to form a calculation. Manipulatives are used to aid calculation. $5+2=7$ No expectation for children to be able to record a number sentence/addition calculation. This may be introduced in the Summer term.

Use visual supports such as ten frames, part-part whole and addition mats, with the physical objects and resources that can be manipulated.

Year 1 - Addition		
Concrete	Pictorial	Abstract
Use cubes to add two numbers together as a group or in a bar. (Some children may still need to use real objects) Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer. $6+5=11$ Start with the bigger number and use the smaller number to make 10. Use of tens frame.	8 1 Use pictures to add two numbers together as a group or in a bar model. Use a number line to count on in ones.	$\begin{aligned} & 4+3=7 \\ & 10=6+4 \end{aligned}$ Use the part-part whole diagram as shown above to move into the abstract. "What is 2 more than 4?" "What is the sum of 2 and 4?" "What is the total of 4 and 2?" $4+2=$ They may use their fingers to support their mental methods. Place the largest number in your head and count on to the answer. $5+2=7$ \qquad

Year 4 - Addition		
Concrete	Pictorial	Abstract
This can be done with place value counters or Base 10. Begin with no regrouping, before moving to calculations with regrouping. Children must understand the importance of starting adding in the ones column. Children should see the written calculation alongside concrete resources to link to written methods.	Children can move to drawing counters in a place value grid. They must show where an exchange has taken place. Exchanging must be noted beneath the answer line of the calculation. Bar models and part-part whole models:	Formal column addition: The calculation symbol should be noted to the left of the numbers. In Y3 and Y4 (and beyond where appropriate) the children can record their written calculations using ($\mathrm{H}, \mathrm{T}, \mathrm{O}$) to reinforce the place value of each digit in the sum. Exchanging must be noted beneath the answer line of the calculation.

Year 6-Addition		
Concrete	Pictorial	Abstract
See year 5 - Add several numbers of increasing complexity using columnar addition.	See year 5 - Add several numbers of increasing complexity using columnar addition.	Formal column addition: More than four digits and decimals with different place value and regrouping in some columns. The calculation symbol should be noted to the left of the numbers. Exchanging must be noted beneath the answer line of the calculation. Zeros may be added as place holders $\begin{array}{r} 81,059 \\ 3,668 \\ 15,301 \\ +20,551 \\ \hline 120,579 \end{array}$

	Concret

Use toys and general classroom resources for children to physically manipulate, group/regroup.

Use specific maths resources such as snap cubes, Numicon, bead strings etc.
They understand subtraction as counting out. They begin to count back in ones and twos using objects, cubes, bead string and number line.
 as ten frames, part-part whole and subtraction mats, with
the physical objects and resources that can be manipulated.

EYFS - Nursery and Reception - Subtraction

A group of pictures for children to cross out or cover quantities to support subtraction.

Use visual supports such as ten frames, part-part whole and bar model with pictures/icons.

Abstract

A focus on symbols and numbers to form a calculation.

3	$?$
7	

$$
7-3=?
$$

No expectation for children to be able to record a number sentence/subtraction calculation.
This may be introduced in the Summer term.

| Use physical objects, counters, cubes and other |
| :--- | :--- |
| items such as bean bags to show how objects can be |
| taken away. |

Year 3 - Subtraction		
Concrete	Pictorial	Abstract
	Bar models and part-part whole models: When confident with using manipulatives, children may record this in their own pictorial way.	Some children may need to see calculations in their expanded form before moving to formal written methods The calculation symbol should be noted to the left of the numbers. $\begin{gathered} 47-24=23 \\ 40+7 \\ -20+4 \\ \hline 20+3 \\ \hline 728-582=146 \\ { }^{4 \prime} 78^{\top} 28 \\ 5882 \\ 1446 \\ \hline \end{gathered}$ Regrouping: Exchanges must be recorded above the top number in the calculation.

Year 6-Subtraction		
Concrete	Pictorial	Abstract
See year 5 - Subtract with increasingly large and more complex numbers and decimal values.	See year 5 - Subtract with increasingly large and more complex numbers and decimal values.	The calculation symbol should be noted to the left of the numbers. Regrouping: Exchanges must be recorded above the top number in the calculation. $\begin{array}{r} \circ \times 1610,699 \\ -\quad 89,949 \\ \hline 60,750 \end{array}$ $\begin{array}{r} \quad \times 35 \cdot 3 \mathrm{~K} 199 \mathrm{~kg} \\ -\quad 36 \cdot 080 \mathrm{~kg} \\ \hline 69 \cdot 339 \mathrm{~kg} \end{array}$

Year 1 - Multiplication		
Concrete	Pictorial	Abstract
\square $=$ Use different objects to add equal groups. Use concrete objects to support counting in equal multiples	Draw pictures to show doubling Drawing images to show equal groups - use these to support repeated addition sentences Number lines to support counting in equal multiples	* Children are not expected to record multiplication formally. The multiplication symbol is introduced in Year 2* Children can write repeated addition sentences to describe pictures and objects. $2+2+2=6$ Use arrays to write repeated addition sentences and prepare for Year 2. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \end{aligned}$ One bag holds 5 apples. How many apples do 4 bags hold?

Year 2 - Multiplication		
Concrete	Pictorial	Abstract
See Year 1 - consolidate multiplication as repeated addition Use counters an objects to create arrays and create corresponding multiplication sentences. $\begin{gathered} 5+5+5+5=20 \\ 4 \times 5=20 \\ 5 \times 4=20 \end{gathered}$ Children should understand that arrays create two different multiplication sentences and due to the commutative law, the order to factors does not affect the answer. Use manipulatives to aid counting in equal multiples or skip counting.	Draw pictures and representations to show how to double numbers Number lines to support counting in equal multiples Draw arrays in different rotations to find commutative multiplication sentences. Bar models:	*Recall and use multiplication and division facts for the 2, 5 and 10 times tables* Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$ $\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$

Year 3 - Multiplication		
Concrete	Pictorial	Abstract
Informal methods and the expanded method are used in Year 3 before moving on to the short multiplication method in Year 4. Multiply a 2-digit number by a 1-digit number - no exchange and with exchange Base 10/ place value counters: Place value counters should be used to support the understanding of the method rather than supporting the multiplication, as children should use times table knowledge Children must always multiply the ones first to prepare them for formal written methods.	Children can represent the work they have done with place value counters pictorially. Flexible portioning using part-part whole models: $\begin{gathered} 160+32=192 \\ 24 \times 8=192 \end{gathered}$	*Recall and use multiplication and division facts for the 3, 4 and 8 times tables* $\begin{aligned} & 4 \times 15= \\ & 4 \times 5=\square \\ & 4 \times 10=\square \\ & \square+\square=\square \\ & 4 \times 15=\square \end{aligned}$ Use of the expanded method allows children to gain a deep understanding of the structure of the calculation before progressing to formal short multiplication in Year 4

Multiply 3-digit numbers by 2-digit numbers

Children can continue to use the area model when multiplying 3 -digits by 2 -digits. Place value counters become more efficient to use but Base 10 can be used to highlight the size of numbers.

Multiply 3-digit numbers by 2-digit numbers

Th	H	T	O
	2	3	4
\times		3	2
	4	6	8
7	0	2	0
7	4	8	8

Move towards the formal written method, seeing the links with the grid method.

Multiply 4-digit numbers by 2-digit numbers

TTh	Th	H	T	O
	2	7	3	9
\times			2	8
2	5^{1}	3	7^{1}	2
5	4	7	8	0
1	6	6	9	2
7	6			

Children have the opportunity to physically cut objects, food or shapes in half.

Use visual supports such as halving mats and partpart whole, with the physical objects and resources that can be manipulated.

Counting and other maths resources for children to share into two equal groups. Later in the year, introduce grouping.

EYFS - Nursery and Reception - Division

Abstract

"Half of 8 is \qquad "

Pictures and icons that encourage children to see concept of halving in relation to subitising, addition and subtraction knowledge. i.e. Knowing 4 is made of 2 groups of 2 , so half of 4 is 2 .

Bar model with pictures or icons to support understanding of finding 2 equal parts of a number, to further understand how two halves make a whole.

| Concrete |
| :--- | :--- |
| Division by sharing: |
| Use concrete manipulatives |
| to share into equal groups. |

Year 3 - Division		
Concrete	Pictorial	Abstract
Use concrete arrays to represent multiplication sentences and related division facts. Highlight that division is not commutative. Divide 2-digits by 1-digit (sharing with no exchange) When dividing larger numbers, children can use manipulatives that allow them to partition into tens and ones.$48 \div 2=24$Tens Ones 10 1 10 1 10 1	Children can draw their own arrays to represent a given division sentence. Divide 2-digits by 1-digit (sharing with no exchange) Part-whole models can provide children with a clear written method that matches the concrete representation. $48 \div \mathbf{2}=\mathbf{2 4}$	*Recall and use multiplication and division facts for the 3, 4 and 8 times tables* Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 5 \times 3=15 \\ & 3 \times 5=15 \\ & 15 \div 5=3 \\ & 15 \div 3=5 \end{aligned}$ Divide 2-digits by 1-digit (sharing with no exchange) Part-part whole models are used to show the calculations that have been done.

Divide 2-digits by 1-digit (sharing with exchange)

표표	ereme ह日e日e
Tens	Ones
Tmertm	- \quad e
[1]!em	- \quad e
m	- \quad -
m	- \quad -

$52 \div 4=13$
Children can use
Base 10 and place value counters to exchange one ten for ten ones. Children should start with the equipment outside the place value grid before sharing the tens and ones equally between the rows.

Divide 2-digits by 1-digit (sharing with remainders)

	$\begin{aligned} & \text { EEE } \\ & \text { EEEEEE } \end{aligned}$
Tens	Ones
(1mmerr	
(1)Tmm	
T-1]mm	- 0 -
(17mImm	

Children can use
Base 10 and place value counters to exchange one ten for ten ones. Starting with the equipment outside the place value grid will highlight remainders, as they will be left outside the grid once the equal groups have been made.

Divide 2-digits by 1-digit (sharing with exchange)

Flexible partitioning in a part-whole model supports this method. $52 \div 4=13$

$$
10+3=13
$$

Divide 2-digits by 1-digit (sharing with remainders)
Blank number lines can be used to count back in equal jumps and identify the remainder left over

$$
123 \div 4=\square \text { remainder } \bigsqcup
$$

Part - part whole model

Divide 2-digits by 1-digit (sharing with

exchange)

Part-part whole models are used to show the calculations that have been done.

Divide 2-digits by 1-digit (sharing with remainders)

Mo now uses the lolly sticks to make triangles.
How many triangles can Mo make?
Complete the sentences.

There are 17 lolly sticks.
There are \square groups of 3
There are \square lolly sticks remaining.
$17 \div 3=\square$
$17 \div 3=$ \qquad emainder \square
Mo can make triangles.

Divide 2-digits by 1-digit (sharing with remainders)

Children can use Base 10 and place value counters to exchange one ten for ten ones. Starting with the equipment outside the place value grid will highlight remainders, as they will be left outside the grid once the equal groups have been made.

Divide 3-digits by 1-digit (sharing)
Children can continue to use place value counters to share 3- digit numbers into equal groups. This should also include numbers that require exchanges and or leave remainders.

Divide 2-digits by 1-digit (sharing with remainders)

Part - part whole model and bar models

Divide 3-digits by 1-digit (sharing)

Flexible partitioning in a part-part whole model.

Divide 2-digits by 1-digit (sharing with remainders)

Children do not need to use the formal short division method at this stage and may use informal jottings or representations such as a part-whole model to record their working instead.

Divide 3-digits by 1-digit (sharing)

Children do not need to use the formal short division method at this stage and may use informal jottings or representations such as a part-whole model to record their working instead.

By the end of this step, children should have a good understanding of division that will support them when they move on to the
formal written method in Year 5

Place value counters or plain counters can be used on a place value grid to support children to divide 4digits by 1-digit.

Divide 4-digits by 1-digit (grouping)
Children can also draw their own counters and group them.

Children should be encouraged to move away from the concrete and pictorial when dividing numbers with multiple exchanges.

Divide 4-digits by 1-digit (grouping)

	4	2	6	6
2	8	5	1_{3}	1_{2}

Exchanging must be noted carefully, as shown.

